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1 Introduction

In 1972 (see [12]), Vinberg proposed an algorithm constructing the fundamental polyhe-
dron of the group Or(L) for a given lattice L and, thereby, determining whether or not L is
reflective. This algorithm has turned out to be useful in both classifying reflective lattices
and describing automorphism groups and moduli varieties of K3-surfaces.

Efforts to implement Vinbergs algorithm on a computer have been made since the
1980s, but all of them dealt with particular lattices, usually determined by diagonal
quadratic forms. Mentions of such programs can be found, e.g., in the papers [7] by
Bugaenko, [11] by Scharlau and Walhorn, [6] by Nikulin, and [1] by Allcock. But the
programs themselves have not been published; the only exception is Nikulins paper, which
contains a program code for lattices of several different special forms. The only known
implementation published together with a detailed documentation is Guglielmettis 2016
program processing diagonal quadratic forms with square-free invariant factors over
several ground fields. Guglielmetti used this program in his thesis to classify diagonal
quadratic forms with small diagonal elements (see [9]). This program works fairly efficient
in all dimensions in which reflective lattices exist.

In this paper, we present an original implementation of Vinbergs algorithm for arbitrary
integral (with the ground field Q) hyperbolic lattices subject to no constraints. The project
is written in the Sage computer algebra system (see [10]) and is available on the Internet
(see [4]). At present, the program works effectively for 2 ≤ n ≤ 5. Thus, it turns out to be
useful, e.g., for solving the open problem of classifying reflective lattices in the dimension
n = 3; it has already been successfully applied by the first-named author to obtain partial
classification results. We plan to optimize the program so as to make it efficient for n ≤ 10.

2 Choice of a Basic Point

The program is fed by an integer square matrix G of order n + 1 determining an inner
product of signature (n, 1) in the hyperbolic lattice L = [G] (here [C] denotes the quadratic
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lattice with inner product determined in some basis by the symmetric matrix C). To
determine the basic point v0, the program seeks a change of coordinates over Q such
that, in the new coordinates, the matrix of inner product is diagonal and its first diagonal
element is negative. The primitive lattice vector proportional to the first vector of the new
basis is taken for v0.

3 Construction of the Fundamental Cone

Suppose that v0 belongs to an m-face of the fundamental cone of the group Or(L)v0
,

1 ≤ m ≤ n. Since the outward normals a1, . . . , am to the faces of the fundamental cone
are perpendicular to v0 in En,1, it follows that they lie in the Euclidean space V1 = 〈v0〉⊥.
However, the lengths of these normals are bounded, and their number is finite; they can
be determined by using the coroutine described in Sec. 6 of this paper.

The fundamental cone is constructed as follows. First, we take the cone C equal to the
entire space V , and then we perform the following procedure for each root in V1 in turn:
if the mirror Ha of a given root a intersects the interior of C, then we replace the cone C by
its intersection with the half-space H−a = {v | (a, v) ≤ 0}. This is a finite procedure, and it
outputs the fundamental domain of the group Or(L)v0

as C.

4 Decomposition of the Lattice Roots

Proposition 1 The lattice L = (L ∩ V1) ⊕ Zv0 is a finite-index sublattice of L, and L/L is a
cyclic group whose order s = |L/L′| divides the number (v0, v0).

Proof. The image of each element of L under factorization by L′ is uniquely determined
by its inner product with v0 modulo (v0, v0). �

Corollary 1 There exist vectors w1, . . . ,ws ∈ L for which L = ⊔(wi + L′). In particular, each
vector a ∈ L has a unique representation in the form

a = a0v0 + v1 + wt,

where a0 ∈ Z, v1 ∈ L ∩V1, and 1 ≤ t ≤ s.

Let us write the distance minimality condition (3) for Vinbergs algorithm in the above
decomposition. Setting ℓ = (v0, v0) ∈ Z<0 and k = (a, a), we obtain

sinhρ(Ha, v0) =
|(a, v0)|

√

(a, a)(v0, v0)
=
|a0ℓ + (wt, v0)|

√
kℓ

.

Therefore, the distance from the mirror Ha to the basic point is determined by the
integer a0, the component wt, and the length of the root a itself. But there are only finitely
many possibilities for the length of the root and the number of the component wt. Thus,
all roots are grouped into sets determined by triples (a0,wt, k), which we totally order
according to the distance from the mirror Ha to the point v0.
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5 Determination of Roots

After the fundamental polyhedral cone is found, the program searches through the roots
according to the total order on the triples (a0,wt, k) introduced above. For each triple, the
vector a is determined by the component v1 ∈ V1 and the condition (a, a) = k; the compo-
nent is found by the coroutine described in Sec.6. Thus, for each triple, a root satisfying
conditions (1) and (2) is found in finite time. The found root satisfies condition (3) by
virtue of the ordering method of the triples. The program adds each found root a j to the
system of roots found previously and checks whether the system of roots (a1, . . . , a j) forms
the system of outward normals for a Coxeter polyhedron of finite volume. There exist
several programs for verifying the finiteness of volume, including Bugaenkos program
mentioned above and Guglielmettis1 program (see [8]), which we have used in this work.

Thus, the program successively determines roots which are outward normals of the
sought-for polyhedron P . If the roots found at some step determine a polyhedron of finite
volume, then the program terminates.

6 The Coroutine for Solving Quadratic Diophantine Equa-

tions

The computational complexity of Vinbergs algorithm is associated almost entirely with
solving a quadratic Diophantine equation of the form

xAxt + Bxt + c = 0,

where A is a positive definite integer symmetric matrix of order n, B is an integer row of
length n, x = (x1, . . . , xn) is a row of unknowns, and c ∈ Z. In our project, this problem
was solved by using a Python coroutine acting by induction on n. Namely, since the
solutions lie on an ellipsoid, it follows that xn can take only finitely many integer values.
The coroutine finds them by the method of conjugate gradients; for each value of xn, the
problem reduces to an (n − 1)-dimensional problem in the hyperplane {xn = const}. For
n = 1, the coroutine finds the integer roots of a quadratic trinomial.

7 Testing the Program for known Examples of Reflective

Lattices

The program was tested for many lattices of rank 3, 4, and 5. For rank 3, examples were
taken from Nikulins list of reflective hyperbolic lattices (see [6]), and for ranks 4 and 5,
from Scharlau and Walhorns list of reflective maximal isotropic hyperbolic lattices (see
[11]); lattices of rank 4 were also taken from classification papers of Vinberg (see [15]) and
of the first-named author of this paper (see [2] and [3]). In all of the tests performed by
us, the results yielded by the program coincided precisely with those of calculations once

1See https://github.com/rgugliel/CoxIter.
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L # faces t (sec)
[−1] ⊕ A3 4 0,7
[−2] ⊕ A3 5 1,9
[−3] ⊕ A3 5 1,0
[−4] ⊕ A3 4 0,66
[−5] ⊕ A3 6 1,56
[−6] ⊕ A3 6 1,5
[−8] ⊕ A3 7 1,72
[−9] ⊕ A3 9 79,5

[−10] ⊕ A3 12 1,72
[−12] ⊕ A3 5 1.02
[−15] ⊕ A3 12 28,7

U ⊕ [36] ⊕ [6] 15 56,6

L # faces t (sec)
[−1] ⊕ [1] ⊕ A2 4 0,6
[−2] ⊕ [1] ⊕ A2 6 0,8
[−3] ⊕ [1] ⊕ A2 5 0,6
[−4] ⊕ [1] ⊕ A2 5 1,02
[−5] ⊕ [1] ⊕ A2 7 1,9
[−6] ⊕ [1] ⊕ A2 8 1,2
[−7] ⊕ [1] ⊕ A2 11 19,2
[−8] ⊕ [1] ⊕ A2 6 1,02
[−9] ⊕ [1] ⊕ A2 5 0,9

[−10] ⊕ [1] ⊕ A2 11 11
[−15] ⊕ [1] ⊕ A2 15 44
[−30] ⊕ [1] ⊕ A2 20 36,6

Table 1: Lattices of the forms [k] ⊕ A3 and [k] ⊕ [1] ⊕ A2 for certain k ≤ 15 and the lattice
U ⊕ [36] ⊕ [6]. Time is given for the Intel Core i5 1.3GHz processor

performed by hand. We have also found a series of new reflective lattices. Some results
yielded by the program are presented in the table. All lattices in this table, except [−1]⊕A3

and [4] ⊕ A3, are new. Moreover, we have proved the reflectivity of the lattices

[2] ⊕ A2 ⊕ [1] ⊕ . . . ⊕ [1] for n ≤ 6

In the table, U =
[

0 1
1 0

]

denotes the standard two-dimensional hyperbolic lattice and An,
the Euclidean root lattice of type An.
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