Homotopy, Fundamental Groups, and Coverings

 $M \simeq N$ means "M is homeo to N"

 $M \simeq_H N$ means "M is homotopy equivalent to N"

RS2 \diamond **1.** Prove that \mathbb{S}^n is not contractible.

RS2 \diamond **2.** Is the following assertion true: if $M \setminus \{x\} \simeq N$, where N is contractible (i.e. $N \simeq_H \{n\}$), then M is not contractible?

RS2 \diamond **3.** Is it true that $M \simeq N$ implies $M \simeq_H N$?

RS2 \diamond **4.** Let *K* be the Klein bottle. Find $\pi_1(K)$.

RS2 \diamond **5.** Let $T^2 = \mathbb{S}^1 \times \mathbb{S}^1$ be the torus. Find $\pi_1(T^2 \vee T^2)$.

RS2 \diamond **6.** Find $\pi_1(\infty)$.