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Coordinate and Matrix Form of Affine
Transformation

Suppose 𝑓∶ 𝔸2 → 𝔸2 is an affine
transformation. Then 𝑑𝑓∶ 𝕜2 → 𝕜2 is a
linear map. In the vectorization form,
𝑓∶ 𝑋 ↦ 𝑑𝑓(𝑋) + 𝐵.

That is,

(𝑥1

𝑥2
) ↦ (𝑎11 𝑎12

𝑎21 𝑎22
) (𝑥1

𝑥2
) + (𝑏1

𝑏2
)



Convex Sets

Suppose 𝔸 is an affine space.

𝐴𝐵 = [𝐴, 𝐵] = {𝜆𝐴 + (1 − 𝜆)𝐵 ∣ 0 ≤ 𝜆 ≤ 1}
is a segment.

𝑀 ⊂ 𝔸 is convex if with any points
𝐴, 𝐵 ∈ 𝑀 it contains the whole 𝐴𝐵.

Planes are convex sets. If 𝑀1, 𝑀2 are
convex, then 𝑀1 ∩ 𝑀2 is convex.



Convex Hull

A convex linear combination of points in
𝔸 is their barycentric combination with
non-negative coefficients.

For any 𝐴0, 𝐴1, … , 𝐴𝑘 ∈ 𝑀, where 𝑀 is
convex, 𝑀 also contains every convex
combination ∑ 𝜆𝑗𝐴𝑗.

For any 𝑀 ⊂ 𝔸, the set conv(𝑀) of all
convex combinations of points in 𝑀 is
convex: conv(𝑀) is a convex hull of 𝑀.



Simplex

A convex hull of a system of affinely
independent points 𝐴0, 𝐴1, … , 𝐴𝑘 ∈ 𝔸 is
a 𝑘-dim simplex (or 𝑘-simplex).

That is, 0-simplex is a point, 1-simplex is
a segment, 2-simplex is a triangle, etc.



Motions/Isometries of Euclidean Space

Suppose 𝔸 = 𝔼𝑛, Then

Isom(𝔼𝑛) = {𝑓 ∈ Aff(𝔼𝑛) ∣ ∀𝑋, 𝑌 ∈ 𝔼𝑛

𝜌(𝑓(𝑋), 𝑓(𝑌 )) = 𝜌(𝑋, 𝑌 )}.

is the isometry group of 𝔼𝑛.

The stabilizer of some point is a
subgroup of GL(𝑛, ℝ) that preserves the
standard inner product: it is O(𝑛, ℝ).



Reflections

Suppose 𝐻 ⊂ 𝔼𝑛 is a hyperplane. That is,
𝐻 = {𝑥 ∈ ℝ𝑛 ∣ (𝑥, 𝑒) + 𝑡 = 0, ‖𝑒‖ = 1, 𝑡 ∈ ℝ}.

Then an orthogonal reflection ℛ𝑒,𝑡 = ℛ𝐻

with respect to 𝐻𝑒,𝑡 ∶= 𝐻 is

ℛ𝑒,𝑡(𝑥) = 𝑥 − 2((𝑒, 𝑥) + 𝑡)𝑒.

Isom(𝔼𝑛) is generated by reflections.



Semidirect Product

We say that 𝐺 is decomposed into the
semidirect product of its subgroups 𝑁
and 𝐻 if
• 𝑁 is a normal subgroup
• 𝑁 ∩ 𝐻 = {𝑒}
• 𝐺 = 𝑁𝐻.

We denote it by 𝐺 = 𝑁 ⋊ 𝐻.



Semidirect Product

• 𝑆𝑛 = 𝐴𝑛 ⋊ ⟨(12)⟩
• 𝑆4 = 𝑉4 ⋊ 𝑆3

• GL(𝑛, 𝕜) =
SL(𝑛, 𝕜) ⋊ {𝑑𝑖𝑎𝑔(𝜆, 1, … , 1) ∣ 𝜆 ∈ 𝕜∗}

• Aff(𝔸) = 𝑇 (𝔸) ⋊ GL(𝑉 )
• Isom(𝔼𝑛) = 𝑇 (𝔼𝑛) ⋊ O(𝑛, ℝ)


