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Coordinate and Matrix Form of Affine
Transformation

Suppose f: A2 — A% is an affine
transformation. Then df: k2 — k? is a
linear map. In the vectorization form,
f: X df(X) + B.

That is,
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Convex Sets

Suppose A Is an affine space.

AB=[AB]={M+(1-XM)B|0< X1}
IS a segment.

M C Ais convex if with any points
A, B € M it contains the whole AB.

Planes are convex sets. If M, M, are
convex, then M, N M, is convex.



Convex Hull

A convex linear combination of points in
A is their barycentric combination with
non-negative coefficients.

Forany Ay, Ay, ..., A, € M, where M is
convex, M also contains every convex
combination > A A..

For any M C A, the set conv(M) of all
convex combinations of points in M is
convex: conv(M) is a convex hull of M.



Simplex

A convex hull of a system of affinely
independent points 4y, A,,..., A, € Ais
a k-dim simplex (or k-simplex).

That is, 0-simplex is a point, 1-simplex is
a segment, 2-simplex is a triangle, etc.




Motions/Isometries of Euclidean Space
Suppose A = E™, Then

Isom(E") = {f € Aff(E") | VX, Y € E"
p(f(X), f(Y)) = p(X,Y)}.
Is the isometry group of E™.

The stabilizer of some pointis a
subgroup of GL(n,R) that preserves the
standard inner product: it is O(n, R).



Reflections

Suppose H C E™ is a hyperplane. That is,
H={zeR"|(x,e)+t=0,|e| =1,t € R}.

Then an orthogonal reflection X, , = Ry
with respectto H, , := H Is

ﬂe,t(x) =z —2((e,z) + t)e.

Isom(E™) is generated by reflections.



Semidirect Product

We say that G is decomposed into the
semidirect product of its subgroups N
and H If

- Nis a normal subgroup
- NN H ={e}
-G =NH.

We denote itby G = N x H.



Semidirect Product

- S, = A, x{(12))

- S, =V, xS,

- GL(n,k) =

SL(n, k) x {diag(A\,1,...,1) | A € k*}
- Aff(A) = T(A) x GL(V)

- Isom(E™) = T(E™) x O(n, R)



