LECTURE 7: LINEAR OPERATORS

NIKOLAY BOGACHEV
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§ 1. Definition, coordinates and preliminaries

Let V be a vector space over field F = R, C, ..., etc.
Definition 1.1. A linear map A: V — V is called a linear operator.
The matrix of an operator A in the basis {ei,...,e,} is A = (a;;), where the j-th column of

Ais Ale;) = Ae; =Y, aije;. That is,
(Aeq, ..., Ae,) = (e1,...,e,)A.

We write A = Mat(A). If y = Az, then in the matrix form one can write Y = AX.
Let (¢),...,€.) = (e1,...,e,)C be another basis of V. Then

rn

(Aey, ..., Ael) = (Aey, ..., Ae,)C = (e1,...,e,)AC = (€},...,el)CTTAC.

Thus,
A'=CAC.

Main Question: How can we change a basis in such a way that the operator matrix has a
"simple” form?
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8§ 2. Invariant subspaces, eigenvectors and eigenvalues

2.1. Invariant subspaces.

Definition 2.1. A subspace U C V is invariant with respect to A: V. — V if AU C U, i.e.
Au € U for anyu e U.

The restriction on an invariant subspace is a well-defined linear operator: A|y: U — U.
In the basis of V' that agrees with U the matrix of A has the following form:

Ay B
0o C)°
where Ay = Mat(A|y).

ItV =Vi®...®V;, where all V; are invariant, then
Ay 0
A = diag(Ay, ..., Ay) = ;
0 Ayg
where A; = Mat(Aly,).
Example 1. A = diag(a;,as), where V =1R? = {e) & (e).
2.2. Eigenvectors and eigenvalues.

Definition 2.2. A wvector v € V s called an eigenvector for an operator A:'V — V if
Av = \v for some number A € F. The corresponding number A € F is called an eigenvalue.

If Av = Av, then (v) is an invariant subspace for A. It is easy to verify that in the basis
{v1,...,v,} of eigenvectors of A we have

A= diag(1, ..., \).

Geometrically, eigenvectors are exactly the directions, where an operator acts by stretching
of a space by the corresponding eigenvalues.

The natural question arises here: how can we calculate eigenvectors and eigenvalues?

The answer is the following: Av = Av if and only if the operator A — A\Z is singular (degen-
erate), where [ is the identical operator on V: Zz :=Id(z) = x.

The last is equivalent to the fact that

det(A — AE) = 0.

Definition 2.3. The space V)(A) := Ker(A — \Z) is called the eigenspace of A associated
with the eigenvalue .

Definition 2.4. The characteristic polynomial of A is
fa(A) = (=1)"det(A — \E).

Eigenvalues are exactly the roots of the characteristic polynomial. When the eigenvalues are
already known, one can calculate the eigenvalues in the following way: it remains just to find
all non-zero solution of a system of linear equations: (A — AZ)x = 0.

Theorem 2.1. The following holds:

(1) dim Vy\(A) < the multiplicity of X in f4,
(2) Vi, (A), ..., V\.(A) are linearly independent for different lambda’s.
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Proof. Sketch.

Part (1): It is enough to consider the matrix of A in the basis of V' that agrees with
dim Vy(A). If dim V) (A) = k, then fa(t) = (t — N\)*h(t).

Part (2): Induction by s. If they are linearly independent, then there exist such vectors v,
that v1 + ...+ vy, = 0. Taking A of it, we obtain A\jv; + ...+ Agvs = 0. After that it remains
to take the difference of this equality and the previous one multiplied by one of the non-zero
numbers A;. After that we can use the induction hypothesis. [

Corollary 1. If f4 has n different roots, then there exists the diagonal basis for A consisting
of its eigenvectors.

§ 3. Existence of a 1-dim or 2-dim invariant subspace for an operator in a real
vector space

Suppose V' is a real vector space, then its complexification is
V(C):={u+iv|uveV}

It is clear that V' (C) is also a vector space, V(C) DV ={v+i-0|v € V}. It also clear that
the basis of V' is a basis for V(C), i.e. dim Vg = dim V(C)¢.

Every linear operator in V' can be uniqely extended to an operator in V(C): Ac(u + iv) =
Au + i - Av (with the same matrix in the basis of V).

Theorem 3.1. For every linear operator in a real vector space there exist a 1-dim or a 2-dim
mvariant subspace.

Proof. If f, has a real root, then A has 1-dim invariant subspace.
Suppose now that f4 has a complex root A + ui, and u + iv € V(C) is the corresponding
eigenvector. That is, Au + iAv = (A + pi)(u + 7v), which follows that

Au = u — pv
Av = pu — Av.

Thus, (u,v) is an invariant subspace. [

§ 4. Linear operators in Euclidean and Hermitian spaces

4.1. Euclidean spaces. Let V' be a real Euclidean space with an inner product (-,-). Then
any operator in V' naturally corresponds to a bilinear form p4(z,y) = (z, Ay).

In the orthonormal basis of V' we have Mat(p4) = Mat(A): @ale,e;) = (e, Aej) = ay;.
Recall that the basis of a Euclidean space V is orthonormal if and only if Mat((-,-)) = E in
this basis.

A map A — @4 is an isomorphism of the space £(V') of linear operators to the space of
bilinear forms on V.

One can also define a transposed bilinear form ¢%(z,y) = ¢a(y,x). Clearly, Mat(¢)) =
Mat(p4)T. We can also define the corresponding adjoint operator A*: (x, A*y) = (y, Az) =
(Az, ). In the orthonormal basis Mat(A*) = Mat(A)T.

Definition 4.1. A linear operator A is called symmetric (or self-adjoint) if A* = A (i.e.
(z, Ay) = (y, Az)).

Definition 4.2. A linear operator A is called skew-symmetric if A* = —A.

Definition 4.3. A linear operator A is called orthogonal if A*A =7 (i.e. A preserves the
inner product in V: (Az, Ay) = (A*Ax,y) = (x,y)).
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It is clear that non-degenerate operators correspond to non-degenerate matrices (det A # 0)
and orthogonal operators correspond to orthogonal matrices (AAT = ATA = E).

Thus, GL(n,R) and O(n,R) denote respectively the groups of non-degenerate and orthogonal
operators on R"™. One can also write GL(V') and O(V).

4.2. Hermitian spaces. Let V' be a Hermitian space. Recall that in V' (which is defined over
C) we have the inner product with following property: (z,y) = (y, x).

In this case we can also define a form ¢4 and its conjugate form ¢% in the way similar to
Euclidean spaces.

That is, (z, A"y) = (y, Az) = (Az,y).

Definition 4.4. An operator A is called hermitian, skew-hermitian, and unitary, if A* = A,
A* = —A, and A* = A™1, respectively.

§ 5. Orthonormal eigenbasis for a symmetric operator
An eigenbasis is a basis of eigenvectors.

Theorem 5.1. Let A be either a symmetric, or a skew-symmetric, or an orthogonal operator
in a Buclidean space V, and U C V be its invariant subspace. Then UL also is invariant for

A.

Proof. Let A be a symmetric operator. If x € U, y € UL, then (z, Ay) = (Az,y) = 0, since
Ax € U, y € U*. The same works for a skew-symmetric operator.

Suppose A is orthogonal. Then A | also is orthogonal and non-degenerate. Let y € U~
and z € U. We need Ay € U+, ie. (2, Ay) = 0. But since A | is non-degenerate, then there
exists z € U, such that z = Az. Then (z, Ay) = (Az, Ay) = (2,y) = 0. n

Theorem 5.2. For any symmetric operator in a Fuclidean space, there exists an orthonormal
eigenbasis.

Proof. Induction by n = dim V. Case n = 1 is trivial.

If n =2, then A = (z g) We have

falt) = det (t S t__bc

If fa(t) =0, then t15 = arery (Z_C)2+4b2 € R, which implies that there exists 1-dim invariant
subspace U (generated by one of the eigenvectors), and in this case V = UBUL = (e1)D(e;) (see
Theorem 5.1) is the sum of 1-dim invariant subspaces, where ey, e are orthonormal eigenvectors.

For n > 2 we choose an invariant (1- or 2-dim) subspace U (see Theorem 3.1) and V = U U~
(see Theorem 5.1), where dim U, dim U+ < n and we can use the induction hypothesis. n

Corollary 2. If A is a symmetric operator in V', then V- = @,V (A), where V\(A) L V,(A)
if A # .

Proof. Let (eq,...,e,) be an orthonormal eigenbasis from Theorem 5.2, Ae; = Aje;. Then
VA(A) = (e; | i = ) is orthogonal to all other V,(A). n

):t2—(a+c)t—l—ac—b2.

Theorem 5.3. For any quadratic form q(x) in a Euclidean space, there exists an orthonormal
basis, where q(x) = \xi+. ..+ N\, 22, where \; are the eigenvalues of Mat(q) in any orthonormal
basis and are defined up to permutation.

Proof. Indeed, ¢(x) = (Az,x) for a symmetric operator A, which has the same matrix in
some orthonormal basis as a form ¢. Then in any orthonormal basis Mat(q) = Mat(A). It
remains to use the eigenbasis from Theorem 5.2. [ ]
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§ 6. Canonical form of an orthogonal operator

Theorem 6.1. For any orthogonal operator in a Fuclidean space, there exists an orthonormal
basis, where

(o)

A= II(oy) ,
diag(—1,...,—1)
diag(1,...,1)

where (see Ezercise 1)

M(a) = (cgsa —sina) .
sina cos

Proof. Induction by n = dim V. Case n = 1 is trivial: A = (£1).

Let n = 2 and (ey, e2) be an orthonormal basis. Suppose Z(Aeq,e1) = a. Since Ae; L Aes,
then either A is a rotation on o (and A = II(«)) or A is a reflection with respect to the bisector
of the angle between e; and Ae;, and in this case A = diag(—1, 1) in a suitable basis.

For n > 2 we can choose again an invariant (1- or 2-dim) subspace U (see Theorem 3.1)
and V = U @ Ut (see Theorem 5.1), where dim U, dim U+ < n and we can use the induction
hypothesis. [

§ 7. Orthonormal basis for a Hermitian and a unitary operator

Theorem 7.1. Eigenvalues of a hermitian operator are real numbers, and eigenvalues of a
unitary operator have absolute values equal 1.

Proof. If A is Hermitian, then A(e,e) = (Ae,e) = (e, Ae) = A(e,e), i.e. A=\ € R.
If A is unitary, then (Ae, Ae) = A\(e, e) = (e, e), that is || = 1. ]

Theorem 7.2. For any Hermitian or unitary operator A the subspace U~ is invariant if U
18 1nvariant.
For any Hermitian or unitary operator A there exists an orthonormal eigenbasis.

Proof. Similar to the Euclidean case. ]

8 8. Polar decomposition

Definition 8.1. An operator A is called positive definite (A > 0) if the corresponding
quadratic form q(z) = (Az,xz) > 0 (is positive definite). It is equivalent to the fact that
AL,y A > 0.

Lemma 8.1. Prove that for any positive definite symmetric linear operator A there is a
unique positive definite symmetric linear operator B such that A = B2.

Proof. In some orthonormal basis Mat(A) = diag(Ay,...,\,). We take in this basis
Mat(B) = diag(v/A1, . .., VA,). Since all /X; > 0, then B > 0.

This operator B is unique, since we can consider different eigenvalues p1, ..., u,, for B, and
V=V,B)&...&V,, (B), where the summands are pairwise orthogonal. The operator B acts
on each V,,(B) as a multiplication by x*. Thus, V,, (B) = V2 (A). It means that p; and V,,, (B)
are uniquely determined. [

Theorem 8.1. (Polar Decomposition.) Prove that each invertible operator A in a Euclidean
space can be decomposed in so called 'polar decomposition’

A =80, = 0,5,
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where operators S; are unique positive definite symmetric operators and O; are unique orthog-
onal operators.

Proof. Let us consider AA*. Clearly, it is symmetric and AA* > 0. Then there exists
S > 0, such that S? = AA*, and it remains to take O = S~1A.
(We can check: if A =80, then AA* = S(OO*)S* = §2.) n

8 9. Exercises

1. Find the matrix of a linear operator of a 2-dimensional rotation on some angle av. We will
denote it by II(«).

2. Find the matrix of an operator of a rotation on an angle @ = 27/3 around the line
£:{$ER3|I1:ZE2:ZE3}.

3. Suppose A is a real operator. Is it true that f4(t) = fa-(¢)?

4. Prove that if A and B are similar to each other (that is, there exists C, such that
C~'AC = B), then f(t) = f5(t).

5. What are the invariants of an operator A with respect to changing of a basis? Find at
least two of them.
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