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Convex Sets

Suppose 𝔸 is an affine space.

𝐴𝐵 = 𝐴, 𝐵 = 𝜆𝐴 + 1 − 𝜆 𝐵 0 ≤ 𝜆 ≤ 1} is 

a segment.

𝐴

𝐵

𝑀

M is convex if:

Planes are convex sets. 

If 𝑀1 and 𝑀2 are convex, 

then 𝑀1 ∩𝑀2 is also convex.



Convex Hull

A convex linear combination of points in 𝔸 is

their barycentric combination with non-

negative coefficients.

For ∀ 𝐴0, 𝐴1, … , 𝐴𝑘 ∈ 𝑀, where 𝑀 is convex,

𝑀 also contains every convex combination

σ𝑗=0
𝑘 𝜆𝑗𝐴𝑗 .

For any 𝑀 ⊂ 𝔸, the set conv(𝑀) of all convex

combinations of points in 𝑀 is also convex. It

is a convex hull of 𝑀.



Simplex

A convex hull of a set of affinely

independent points 𝐴0, 𝐴1, … , 𝐴𝑘 ∈ 𝔸 is a 𝑘-

dim simplex or a 𝑘-simplex.

0-simplex is a point, 1-simplex is a segment,

2-simplex is a triangle, etc.

𝑘 = 0 𝑘 = 1 𝑘 = 2 𝑘 = 3



Neighborhoods and Interior Points

An 𝜀-neighborhood of 𝐴 ∈ 𝔼𝑛is an open ball

𝐵 𝐴, 𝜀 = {𝑋 ∈ 𝔼𝑛 ∣ 𝜌(𝐴, 𝑋) < 𝜀}.

𝐴 ∈ 𝑀 is an interior point of the set 𝑀 if 

𝐵 𝐴, 𝜀 ⊂ 𝑀 for some 𝜀 > 0.

A set int(𝑀) of all interior points 𝑀 ⊂ 𝔼𝑛 is 

called the interior of 𝑀.

If int 𝑀 ≠ ∅ for a convex set 𝑀, then 𝑀 is a 

convex body.



Convex Body

Suppose M is convex. Then

int M ≠ ∅ ⇔ aff 𝑀 = 𝔼𝑛.

Proof: If aff 𝑀 = 𝔼𝑛, then M has 𝑛 + 1

affinely independent points. It implies that M 

contains a simplex and a small ball inside.

The converse is obvious.



Neighborhoods and Interior Points

Suppose 𝑃 ∈ int 𝑀 , 𝑄 ∈ 𝑀, and M is convex.

Then for any 𝑋 ∈ (𝑃, 𝑄), we have 𝑋 ∈ int 𝑀 .

Proof: If 𝑃 ∈ int 𝑀 with a ball 𝐵(𝑃, 𝜀), and 

𝑸𝑿 = 𝜆 𝑸𝑷, then 𝐻𝑄
𝜆(𝐵(𝑃, 𝜀)) is the 

(𝜆𝜀)-neighborhood of 𝑋 ∈ 𝑃, 𝑄 .

𝑃 𝑄𝑋



Hyperplanes and Half-Spaces

Suppose 𝑓 is affinely-linear function on 𝔼𝑛.

Then we define a hyperplane

𝐻𝑓 ≔ {𝑥 ∈ 𝔼𝑛 ∣ 𝑓 𝑥 = 0}

𝐻𝑓
+ ≔ {𝑥 ∈ 𝔼𝑛 ∣ 𝑓 𝑥 ≥ 0}

𝐻𝑓
− ≔ 𝑥 ∈ 𝔼𝑛 𝑓 𝑥 ≤ 0 .

and half-spaces



Hyperplanes and Half-Spaces

Boundary points of 𝑀 are the points from

clos 𝑀 ∖ int 𝑀 . The boundary of 𝑀 is

𝜕𝑀 = clos 𝑀 ∖ int 𝑀 .

𝐻𝑓 is supporting for a closed convex body M

if 𝑀 ⊂ 𝐻𝑓
+ and ∃𝐴 ∈ 𝑀, s.t. 𝐴 ∈ 𝐻𝑓.

𝐻𝑓
−

𝐻𝑓
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𝑀

𝐴
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Supporting Hyperplanes
𝐻 that passes through a point 𝑋 ∈ 𝜕𝑀 of a

closed convex body 𝑀, is a supporting

hyperplane iff 𝐻 ∩ int 𝑀 = ∅.

Proof: If 𝐻 ∩ int 𝑀 ≠ ∅, then points of 

int(𝑀) lie in both sides of 𝐻. Conversely, if 

points of 𝑀 lie in both sides of 𝐻, then 

∃ 𝐴, 𝐵 , connecting 𝐴 ∈ 𝐻+ ∩ int(𝑀) and 

𝐵 ∈ 𝐻− ∩ int 𝑀 , since any 𝑋 ∈ 𝑀 is a limit 

point for int 𝑀 . Clearly, 𝐴, 𝐵 ∩ 𝐻 ≠ ∅.

𝐻−

𝐻+
𝑀

𝑋

𝐻



The Separation Theorem

For every point 𝑋 ∈ 𝜕𝑀 for a closed convex 

body 𝑀 ⊂ 𝔼𝑛 there exists a supporting 

hyperplane 𝐻 ∋ 𝑋.

Proof:

Let us prove by induction on 𝑘 ≤ 𝑛 − 1, that 

there exists a 𝑘-dimensional plane through 𝑋

that does not intersect int 𝑀 .



The Separation Theorem

For 𝑘 = 0 this plane is 𝑋. Assume that we

have a 𝑘 − 1 -dim plane 𝑃 with the required

conditions.

Pick any 𝑘 + 1 -dim space 𝑆′, containing 𝑃

and 𝐴0 ∈ int(𝑀). Let us find our 𝑘-dim plane.



The Separation Theorem

𝑀′ = 𝑀 ∩ 𝑆′ is a convex body in 𝑆′. Clearly, 

int 𝑀 ∩ 𝑆′ ⊂ int 𝑀′ . Conversely, 

∀𝐵 ∈ int 𝑀′ is a point of 𝐴0, 𝐵0 ,

where 𝐵0 ∈ 𝑀′ ⊂ 𝑀. Hence, 𝐵 ∈ int 𝑀 .

𝐴0 𝐵0𝐵

𝑀′



The Separation Theorem

Then it 

remains to prove that 𝑆′ ⊃ a supporting 

hyperplane of 𝑀′ that contains 𝑃.

Hence, 𝐵 ∈ int 𝑀 . Therefore, 

int 𝑀′ = int 𝑀 ∩ 𝑆′.

It follows that 𝑃 ∩ int 𝑀′ = ∅.

We change the notation: 

𝑆′ = 𝑆, 𝑀′ = 𝑀, 𝑘 + 1 = 𝑛.



The Separation Theorem

Let 𝑃 be a (𝑛 − 2)–dim plane through the

point 𝑋 ∈ 𝜕𝑀, such that 𝑃 ∩ int 𝑀 ≠ ∅.

Since 𝐻′ and 𝐻′′ can not intersect int 𝑀

simultaneously, we may assume that 𝐻′

intersects int(𝑀) while 𝐻′′ does not.

If a hyperplane 𝐻 ⊃ P, then 𝑃 divides 𝐻 into

2 half-spaces 𝐻′ and 𝐻′′. If 𝐻′ ∩ int 𝑀 = ∅

and 𝐻′′ ∩ int 𝑀 = ∅, we are done.



The Separation Theorem

Let us rotate 𝐻 around 𝑃, clockwise.
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