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Convex Sets

Suppose A is an affine space.

AB =[A,B]={AA4+ (1 —-A)B|0< 1< 1}is
a segment.

M is convex if:

Planes are convex sets.

If M; and M, are convex,
then M; N M, is also convex.



Convex Hull

A convex linear combination of points in A is
their barycentric combination with non-
negative coefficients.

For V Ay, A4, ...,4; € M, where M is convex,

M also contains every convex combination
K

For any M c A, the set conv(M) of all convex
combinations of points in M is also convex. It
is a convex hull of M.



Simplex
A convex hull of a set of affinely
independent points Ay, A4, ..., A, € A is a k-
dim simplex or a k-simplex.
0-simplex is a point, 1-simplex is a segment,
2-simplex is a triangle, etc.




Neighborhoods and Interior Points

An e-neighborhood of A € [E"is an open ball
B(A,e) ={X€eE"|p(4,X) <c¢€}

A € M is an interior point of the set M if
B(A,e) € M for some € > 0.

A set int(M) of all interior points M < [E™ is
called the interior of M.

[fint(M) # @ for a convex set M, then M is a
convex body.



Convex Body

Suppose M is convex. Then
int(M) # @ © aff(M) = E™.

Proof: If aff(M) = E™, then M hasn + 1
affinely independent points. It implies that M
contains a simplex and a small ball inside.

The converse is obvious.



Neighborhoods and Interior Points

Suppose P € int(M),Q € M, and M is convex.
Then for any X € (P,(Q), we have X € int(M).

Proof: If P € int(M) with aball B(P, €), and
QX = 1 QP, then H}(B(P, ¢)) is the
(A€)-neighborhood of X € (P, Q).

_____



Hyperplanes and Half-Spaces

Suppose [ is affinely-linear function on E".
Then we define a hyperplane

He :={x € E" | f(x) = 0}
and half-spaces

Hfr ={x €E" | f(x) = 0}

He ={x€E"| f(x) <0}



Hyperplanes and Half-Spaces

Boundary points of M are the points from
clos(M) \ int(M). The boundary of M is
OM = clos(M) \ int(M).

H¢ is supporting for a closed convex body M/
if M c H]fr and 34 € M,s.t. A € H;.




Supporting Hyperplanes
H that passes through a point X € dM of a
closed convex body M, is a supporting
hyperplane iff H N int(M) = @.

(A, B), connecting
B € H™ N int(M), s



The Separation Theorem

For every point X € dM for a closed convex
body M < [E" there exists a supporting
hyperplane H 3 X.

Prootf:

Let us prove by induction on k < n — 1, that
there exists a k-dimensional plane through X
that does not intersect int(M).



The Separation Theorem

For k = 0 this plane is X. Assume that we
have a (k — 1)-dim plane P with the required

conditions.

Pick any (k + 1)-dim space S’, containing P
and A, € int(M). Let us find our k-dim plane.



The Separation Theorem

M" = M n S"is a convex body in S’. Clearly,
int(M) NS" € int(M"). Conversely,

VB € int(M") is a point of (4, By),

where B, € M' € M. Hence, B € int(M).




The Separation Theorem

Hence, B € int(M). Therefore,
int(M") =int(M) N S’.
[t follows that P N int(M') = @. Then it

remains to prove that S’ © a supporting
hyperplane of M’ that contains P.

We change the notation:
S' =5, M' =M, k+1=n.



The Separation Theorem

Let P be a (n — 2)-dim plane through the
point X € dM, such that P nint(M) = Q.

If a hyperplane H © P, then P divides H into
2 half-spaces H' and H". If H' nint(M) = @
and H'' N int(M) = @, we are done.

Since H and H" can not intersect int(M)
simultaneously, we may assume that H’
intersects int(M) while H"' does not.



The Separation Theorem

Let us rotate H around P, clockwise.







