Linear Algebra

Lecture 6: Convex Sets

Nikolay V. Bogachev

Moscow Institute of Physics and Technology
Department of Discrete Mathematics
Laboratory of Advanced Combinatorics and Network Applications

Convex Sets

Suppose A is an affine space.

$$AB = [A, B] = \{\lambda A + (1 - \lambda)B \mid 0 \le \lambda \le 1\}$$
 is a segment.

M

M is convex if:

Planes are convex sets. If M_1 and M_2 are convex, then $M_1 \cap M_2$ is also convex.

Convex Hull

A convex linear combination of points in A is their barycentric combination with non-negative coefficients.

For $\forall A_0, A_1, ..., A_k \in M$, where M is convex, M also contains every convex combination $\sum_{j=0}^k \lambda_j A_j$.

For any $M \subset A$, the set conv(M) of all convex combinations of points in M is also convex. It is a convex hull of M.

Simplex

A convex hull of a set of affinely independent points $A_0, A_1, ..., A_k \in \mathbb{A}$ is a k-dim simplex or a k-simplex.

0-simplex is a point, 1-simplex is a segment, 2-simplex is a triangle, etc.

Neighborhoods and Interior Points

An ε -neighborhood of $A \in \mathbb{E}^n$ is an open ball $B(A, \varepsilon) = \{X \in \mathbb{E}^n \mid \rho(A, X) < \varepsilon\}.$

 $A \in M$ is an interior point of the set M if $B(A, \varepsilon) \subset M$ for some $\varepsilon > 0$.

A set int(M) of all interior points $M \subset \mathbb{E}^n$ is called the interior of M.

If $int(M) \neq \emptyset$ for a convex set M, then M is a convex body.

Convex Body

Suppose M is convex. Then

$$int(M) \neq \emptyset \Leftrightarrow aff(M) = \mathbb{E}^n$$
.

Proof: If $aff(M) = \mathbb{E}^n$, then M has n + 1 affinely independent points. It implies that M contains a simplex and a small ball inside.

The converse is obvious.

Neighborhoods and Interior Points

Suppose $P \in \text{int}(M)$, $Q \in M$, and M is convex. Then for any $X \in (P, Q)$, we have $X \in \text{int}(M)$.

Proof: If $P \in \text{int}(M)$ with a ball $B(P, \varepsilon)$, and

 $\overrightarrow{QX} = \lambda \ \overrightarrow{QP}$, then $H_Q^{\lambda}(B(P, \varepsilon))$ is the $(\lambda \varepsilon)$ -neighborhood of $X \in (P, Q)$.

Hyperplanes and Half-Spaces

Suppose f is affinely-linear function on \mathbb{E}^n . Then we define a hyperplane

$$H_f \coloneqq \{x \in \mathbb{E}^n \mid f(x) = 0\}$$

and half-spaces

$$H_f^+ \coloneqq \{x \in \mathbb{E}^n \mid f(x) \ge 0\}$$

$$H_f^- \coloneqq \{ x \in \mathbb{E}^n \mid f(x) \le 0 \}.$$

Hyperplanes and Half-Spaces

Boundary points of M are the points from $clos(M) \setminus int(M)$. The boundary of M is $\partial M = clos(M) \setminus int(M)$.

 H_f is supporting for a closed convex body M if $M \subset H_f^+$ and $\exists A \in M$, s.t. $A \in H_f$.

Supporting Hyperplanes

H that passes through a point $X \in \partial M$ of a closed convex body M, is a supporting hyperplane iff $H \cap \operatorname{int}(M) = \emptyset$.

Proof: If $H \cap \text{int}(M) \neq \emptyset$, then points of int(M) lie in both sides of H. Conversely, if points of M lie in both sides of H, then $\exists (A, B)$, connecting $A \in H^+ \cap \text{int}(M)$ and $B \in H^- \cap \text{int}(M)$, since any $X \in M$ is a limit point for int(M). Clearly, $(A, B) \cap H \neq \emptyset$.

For every point $X \in \partial M$ for a closed convex body $M \subset \mathbb{E}^n$ there exists a supporting hyperplane $H \ni X$.

Proof:

Let us prove by induction on $k \le n - 1$, that there exists a k-dimensional plane through X that does not intersect int(M).

For k = 0 this plane is X. Assume that we have a (k - 1)-dim plane P with the required conditions.

Pick any (k + 1)-dim space S', containing P and $A_0 \in \text{int}(M)$. Let us find our k-dim plane.

 $M' = M \cap S'$ is a convex body in S'. Clearly, int $(M) \cap S' \subset \text{int}(M')$. Conversely, $\forall B \in \text{int}(M')$ is a point of (A_0, B_0) , where $B_0 \in M' \subset M$. Hence, $B \in \text{int}(M)$.

Hence,
$$B \in \text{int}(M)$$
. Therefore, $\text{int}(M') = \text{int}(M) \cap S'$.

It follows that $P \cap \operatorname{int}(M') = \emptyset$. Then it remains to prove that $S' \supset a$ supporting hyperplane of M' that contains P.

We change the notation:

$$S' = S$$
, $M' = M$, $k + 1 = n$.

Let P be a (n-2)-dim plane through the point $X \in \partial M$, such that $P \cap \operatorname{int}(M) \neq \emptyset$.

If a hyperplane $H \supset P$, then P divides H into 2 half-spaces H' and H''. If $H' \cap \text{int}(M) = \emptyset$ and $H'' \cap \text{int}(M) = \emptyset$, we are done.

Since H' and H'' can not intersect int(M) simultaneously, we may assume that H' intersects int(M) while H'' does not.

Let us rotate *H* around *P*, clockwise.

