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The Separation Theorem

For every point X € dM for a closed convex
body M < [E" there exists a supporting
hyperplane H 3 X.




The Separation Theorem

We proved that any plane P trough X € dM,
s.t. P Nnint(M) = @, is contained in a
supporting hyperplane.

X € dM can belong to either a unique or

infinitely many supporting hyperplanes.

X “~o | x

~

o= 2 o




Intersection of Half-Spaces

Every closed convex set is an intersection of
(perhaps infinitely many) half-spaces.

Proof: H; = Hf N Hy, itimplies that any

plane is an intersection of half-spaces.

Thus, it remains to prove the theorem for a
convex body.
Every convex body is the intersection of

half-spaces of its supporting hyperplanes.



Polyhedron

A convex polyhedron is an intersection of
finitely many half-spaces (sometimes, non-
empty interior is required).

Parallelepiped Simplex



Extreme Points

A point A € M for a convex M is extreme if it

is not an interior point of any interval in M.

Theorem. A bounded closed convex set M is

the convex hull of the set E (M) of its extreme
points.

Proof: Let M = conv E(M). Clearly, M < M.
We will prove by induction on n = dim E"

that M ¢ M . Assume thatn >0, A € M, and
M is a convex body.



Extreme Points

Proof: Assumethatn >0,4 € M,and M is a
convex body. We'll prove that A € M.

Case 1: A € dM. Taking a supporting
hyperplane H 3 A, we obtain that a bounded
closed convexset H N M = conv E(H N M)
andA € M .

Case2: A € int M. Then A € (X,Y), where
X, Y € dM, and therefore, X,Y € M .
Thus, A € M .



Minkowski-Weyl Theorem

M is a convex polyhedron iff M is a convex
hull of finitely many points.

Proof: Let M = N7, Hfrj be a convex

polyhedron. Let us prove that VX € E(M) is
the only point in the intersection of some of

+ +
HE, .., HF .
This will imply that
# (E(M)) < +o0,and M = conv (E(M)).



Minkowski-Weyl Theorem
Proof: Let A € E(M). Define

J={jilfid)=0}c{y,.. m}

P={X€eE"|fi(X)=0,j€e]}.

Since f;,(A) > 0 for k € ], we see that
A € int(M N P) in the space P.

But A € E(M),hence A € E(M n P). Thus,
dim P = 0, thatis, P = {4}.



Minkowski-Weyl Theorem
Proof: Let M = conv{44, ..., A, }. We assume

that aff(M) = E™. Consider
M* ={f | f(4;) =0 for1<]<k2f(/1)—1}

Any f is uniquely determined by f (4;) for

j=1,..,k.Since |f(Aj)| < 1,then M~ is

bounded and M* = conv{fy, ..., /;s}. Thus,
M={X€eEE"|f(X)=0VfeEM }=
={XeE"| f,(X)=>20Vk=1,.. m}






